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I. Equilibrium Width of a Film. If a certain amount of a light fluid is placed on an 
unconfined surface of a heavier one, while the fluids do not mix the final state of the sys- 
tem isdetermined by the sign if the quantity y: 

?=?lq-~--?*,, (i.i) 

where 7,, Ya, and Y*a are the surface tension coefficients of the light fluid--heavy fluid, 
light fluid--atmosphere, and heavy fluid--atmosphere boundaries, respectively (Fig. i). If 

< 0 (the quantity y is called the spread coefficient [I]), a monomolecular film is formed. 
For y > 0 a film of finite width Ho is formed, with the width determined by the equation [2] 

H~= 2V 
pg (i - p/p,), ( l .  2) 

where p and p, are the densities of the upper and lower fluids, and g is the acceleration. 

The total force acting on the film cross section AB from the right equals the sum of sur- 
face tensions of the horizontal boundaries of the upper fluid due to hydrostatic pressure of 
its layer of height H. The force acting on AB from the left equals the surface tension of 
the free boundary of the lower fluid due to the pressure of its layer of height H,. Equating 
these forces, we have 

71 q- ?a - -  pgHV2 - 71= - -  p,gH~/2. ( 1 . 3 )  

Taking  i n t o  a c c o u n t  t h e  Arch imedes  law H, = ( p / p , ) H ,  H, + H2 = H, we o b t a i n  ( 1 . 2 )  f rom ( 1 . 3 ) .  
C o n s i d e r i n g  t h e  p rob lem o f  e q u i l i b r i u m  w i d t h  o f  a f i l m  by t h e  o r d i n a r y  methods  o f  h y d r o s t a t -  
i c s ,  d i s c u s s e d ,  e . g . ,  i n  [ 3 ] ,  i t  can  be  shown by a c c o u n t  o f  t h e  b o u n d a r y  c o n d i t i o n s  a t  p o i n t  
O t h a t  r e l a t i o n  ( 1 . 3 )  i s  an e x a c t  c o n s e q u e n c e  o f  t he  e q u a t i o n s  o f  h y d r o s t a t i c s .  Not b e i n g  
i n t e r e s t e d  i n  t he  shape  o f  t h e  f i l m  a t  d i s t a n c e s  o f  o r d e r  Ho from t h e  b o u n d a r y ,  i t  can  be a s -  
sumed t h a t  t h e  a c t i o n  o f  s u r f a c e  f o r c e s  o f  a l l  b o u n d a r i e s  r e d u c e s  t o  t h e  a c t i o n  o f  a f o r c e  o f  
m a g n i t u d e  y p e r  u n i t  l e n g t h  on t he  f i l m  b o u n d a r y ~  Th is  a p p r o x i m a t i o n ,  c o r r e c t  i n  t h e  s t a t i c  
c a s e ,  i s  a l s o  v a l i d  i n  some f l o w  r e g i o n  under  t h e  a c t i o n  of  f o r c e s  o f  t h e  same o r d e r  as  y .  

The i n t e r e s t  i n  t h i s  g roup  o f  p rob l ems  has  i n c r e a s e d  w i t h  t h e  a p p e a r a n c e  o f  a new method 
o f  p r o d u c i n g  h i g h - q u a l i t y  g l a s s  p l a t e s ,  t he  f l o a t  p r o c e s s  [ 4 ] .  At  one s t a g e  o f  t h i s  p r o c e s s  
t h e  f l o w  o f  m o l t e n  g l a s s  f l o w s  o v e r  i n t o  a b a t h  w i t h  m o l t e n  t i n ,  w h i l e  t h e  edges  o f  t h e  g l a s s  
s t r i p  r ema in  f r e e .  A f t e r  t h e  t ime  n e c e s s a r y  f o r  t he  g l a s s  s u r f a c e  t o  r e m a i n  smooth ,  i t s  , 
w i d t h  r e a c h e s  an e q u i l i b r i u m  v a l u e  Ho e q u a l  t o  6-7 mm. I n  t h i s  example  we e n c o u n t e r  a f l o w  
o f  a v i s c o u s  f i l m  o v e r  a s u r f a c e  o f  an  i n v i s c i d  f l u i d ,  s i n c e  t he  v i s c o s i t y  o f  t i n  i s  n e g l i g i -  
b l y  low a t  h i g h  t e m p e r a t u r e s  i n  c o m p a r i s o n  w i t h  t h e v i s c o s i t y  o f  g l a s s ,  and t h e r e  a r e  no t a n -  
g e n t i a l  s t r e s s e s  on t h e i r  common b o u n d a r y .  A l l  v i s c o u s  e f f e c t s  i n  t h i s  t y p e  Of f l o w  a r e  due 
to internal friction due to the change in shape of the film itself. 

2. Derivation of Equations of Motion. We start from the equation of continuity and the 
equations for the horizontal components of the momentum for an incompressible fluid of con- 
stant density= 

du/ax + av/ay 60w/Oz == 0; ~2.1)  

p(~ui~t + Ou2~x + 8uv/ay ~ Ouw/Oz) = doxx fox -~ aaxu!Oy -~- a~x~ laz; (2 .2 )  

p(Ou!Ot ~ Ouv/Ox ~ Ou210y -~- Ovw/Oz) - 3~yxlOx q- O~yylOy ~ O~vz/OZ. (2 .3 )  

where  u ,  v ,  w a r e  t he  v e l o c i t y  components  a l o n g  t h e  x ,  y ,  z a x e s ,  and ~  ~  a r e  t h e  com- 
p o n e n t s  o f  t he  s t r e s s  t e n s o r .  The p o s i t i o n s  o f  t he  upper  and lower  s u r f a c e s  o f  t h e  f i l m  H2 
( t ,  x ,  y)  a n d - - H , ( t ,  x ,  y)  a r e  assumed to  be s l o w l y  v a r y i n g  f u n c t i o n s  o f  x and y ,  so t h a t  t h e  
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Fig. i 

characteristic intervals of their variation are large in comparison with the width H = H, + 
H2, and the inequalities (aHJax) a << I, (OHJay)'- << i, i = i, 2 are also valid. In integrating Eqs. 
(2.1)-(2.3) over z we use the equation 

Ha H2 I [ of ( t , x , y , z ) d z =  o y Oltl oil a 
, ~ -~[ /dz --  / ot ] tt2"-6-~ ( 2 . 4 )  

- -H 1 --H, -H 1 

and similar equations for differentiation with respect to x and y. 
the velocity and the stresses over the width 

H a 11 a 

<u> = "7/" udz, <o=> ---- UT . 
- - H ,  --II 1 

~xdz, ... 

We introduce averages of 

The following kinematic conditions are valid for w values on the surfaces 

IOH a OH 0 a110~ /OH x OH x OH,\ 
w I.a [ -~-  + -',- ~" -q-,jJ~., CJF -r = u ~ " u, I - ~ q  = - ' ~ - ~  + v ~ ) _ ~ , .  ( 2 . 5 )  

Integration of (2.1) over z with account of (2.4), (2o5) gi~esan:eqUa~ion of continuity in 
the form 

oH , ~_. o (H <v>) = 0. /.~ ~ (H <u>) -~- 

The velocity components u and v can be written in the form 

u = <u> + 6u, v = <v> -}- 6v, <6tt> = < 6 0  = 0. 

We assume that the horizontal velocities vary little over the film width, ioe., ]6u] << Ku>J, 
16vl<<K~>l . After integration over z the left-hand side of Eq. (2.2) can be written in the 
form 

p[OH<u>/Ot + OH<u>"/Ox -W OH<u><v>/Oy + 02], 

where O2 is the sum of second-order terms. Integration of the right-hand side of (2.2) gives 
the expression 

0H <~=> OH 011o] [ ag I agl] (2.6) ~ + ~= ~ - -  ~ . ~  " - -  o =  § ~.x -~ + o ~  - ~ - y j _ ~  
o~ + o--'-F-- '~: - -~-Fy J~  

The components of the outer normals to the surfaces ~1 and H2 can be written approximately 
in the form 

nl = ( - - O H J O x , -  OHJOy,- - t ) ,  n,  =- (--OH~/Ox, --OHa/Oy, t) .  

I t  i s  now s e e n  t h a t  t h e  s q u a r e  b r a c k e t s  o f  ( 2 . 6 )  c o n t a i n  t h e  x - c o m p o n e n t s  o f  t h e  f o r c e s  a c t -  
i n g  on  t h e  f i l m  s u r f a c e .  We a s s u m e  t h a t  f o r c e s  a r e  a b s e n t  a t  t h e  u p p e r  b o u n d a r y  o f  t h e  f i l m ,  
b u t  a t  t h e  l o w e r  b o u n d a r y  

OtI  1 OH1] [ , OHz z OH,] + + 

where ~ is the stress tensor in the lower fluid. 
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The vanishing of the z-component of the force at the upper boundary is written, up to 
first-order quantities, in the form ..... 

fizz IH2 ~ O. 

For a Newtonian fluid 

ff xx = - - p  q- 2~tOu/Oz, ~.~ = tt(Ou/Oy + Ov/Ox), 

a ~  : =  --p + 2ttOw/Oz, 

(2.7) 

( 2 . 8 )  

where p is the pressure and ~ is the viscosity coefficient. Taking into account 
dition (2.7) gives 

[ou . ,Or l [O<u> o <v>.\ ,, [OSu O6v~ 

(2.1), con- 

(2.9) 

Bearing in mind that 6u and ~v are not only small, but are also slowly varying functions, 
i.e., differentiation with respect to x and y enhances the order of smallness of the last 
term in (2.9), it can be neglected within the accuracy assumed by us. In that case 

p lu ~ = -- 2 B (0 <u>IOx + O <v>/Sy). (2. I0) 

We note that the transition from (2.9) to (2.10) is essentially equivalent to the assumption 
of linear dependence of the velocity w on z, since the equality w = A(t, x, y)z + B(t, x, y) 
follows from the equation 

owmZ = -@<u>/Oz + a<v>my)] (2.ll) 

We assume that the pressure in the film varies hydrodynamically: 3plaz =--0g. 

Then from (2.10) we obtain 

p = pg(H.~ -- z) -- 2~(a<u>/az + a<v>my). 

Using (2.8), (2.11), we have on the lower boundary 

~= I-H, = -- pg~ (2.12) 

The representation a~h=--p181h , where 6ik is the Kronecker symbol. 

With varying degree of accuracy one can take into account the flow properties of the 
lower fluid, choosing various expressions for the pressure p*. The simplest property, suit- 
able for low-intensity flows, is the assumption that the pressure in it is hydrostatic. Us- 

ffl 
ing (2.12), from the condition ~zzl-H I ---- zzl-H I , we then obtamn H, = (0/02)H, i.e., in our ap- 
proximation the condition of hydrostatic equilibrium is satisfied locally. One can now write 

H <~> R "~ o <~> . ,. o <~> , [o <~> + ~ <~>I 
= - - p g - ~ - + 4 ~ H - ~ x  + ~ - - b ~ - y  + O ~ ,  H < ~ > = [ x u [ - - g ~ - . j  - - ~ - x / + 0 2 .  

Besides, 

I OH, t 0//1] OH1 P~ OHS 
~& + ~= ~ + a ~  -~yf]_~, = - p ~ g ~  ~ = ~ - E ~ .  

Collecting the expressions obtained, turning to substantial description of the inertial 
terms, discarding the averaging sign, and using the fact that the equation for the y-compo- 
nent of the momentum is obtained from the equation for the x-component by replacing x ~-y, 
u ~-u , we have the following system for the functions H, u, v of the variables t, x, y: 

OH~Or -}- OHu/Ox -I- OHv/Oy = O; (2.13) 

"du ---- : '  H 2 , T,~au O Ov . 

2 av 
(2.15) 

where dldt = @~Or ~- uO/ax -~ UO/Oy . 
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3. General Formulation. We write Eqs. (2.14), (2.15) in the form 

pHdvJdt  = 08ihlaxk -5 F~, i, k = t ,  2, 

where  by k we u n d e r s t a n d  summat ion;  S ik  , t w o - d i m e n s i o n a l  s t r e s s  t e n s o r ;  and F i ,  v e c t o r  o f  e x -  
t e r n a l  f o r c e s .  The t e n s o r  S ik  can  be  r e p r e s e n t e d  i n  t h e  form 

-5 Sik PSi~ -5 s -5 2~Hem. 

where P is the two-dimensional pressure: 

P = p(i - -  p/pz)gHSe; ( 3 . 1 )  

eik is the velocity deformation tensor, and D is the two-dimensional velocity. The quanti- 
ties XH and BH play,the role of Lame constants. Using the deviator dik , the viscous part of 
the stress tensor Sik can be written in the form 

( +I S~ = d ~ - 5 ~ ' H D ~ ,  d~ = 2~H em-- ~ D  . ( 3 . 2 )  

Thus, the film flow can be described as flow of a two-dimensional fluid with the equa- 
tion of state (3.1) and nonvanishing Lame "constants" (which due to the factor H are func- 
tions of x i and t) or the two-dimensional analog of the bulk Viscosity B'H, with ~ = 2 , B' = 
3B. This stress tensor should not be used if it is necessary to take into account the film 
extension.* In the case of planar flow (in the three-dimensional sense) for v2 = 0 we have 

t 

S, = 4~'Iavl/Ox.% In passlng to the one-dimensional flow and averaging Eq. (2.14) over y we 
t ! 

obtain $I = ~ sOvx/ax, where s is the area of the transverse cross section. Thus, the quanti- 
ty B' = 3~ is practically the "longitudinal viscosity" introduced in [7]. 

The film motion over a layer of an inviscid fluid can be interpreted as slipping over a 
solid surface deflected by the weight of the film by the quantity H,. For Px = ~ we obtain 
a slipping of the film over a horizontal plane, with P = pgH2/2. If we now put in the equa- 
tions B = % = 0, we obtain the ordinary equations of "soft water," so that the given model 
can also be considered as a generalization of the "soft water" model. 

In the present model we take into account only the inertia of the film itself, there- 
fore it can used when inertial effects in the lower fluid have little effect on the film flow. 
Hence also follow the special forms of the fast film flows, such as the accelerated motion of 
a film of constant width in a direction parallel to the edge. If the film moves together 
with the fluid flow, these flows can also be considered within the model considered, intro- 
ducing a moving coordinate system and including in F i inertial forces. 

It is advisable to give the formulation of the equations obtained in arbitrary coordi- 
nates. The general equation of motion of a continuous medium with account of the replacement 
of p, X, ~ by pH, ~H, BH is [8] 

pHa ~ = v jS  ij -5 F i, S ij =- -Pg~J-SXHDg CJ -5 2~He Cj, i, ] = 1, 2. ( 3 . 3 )  

Here the superscripts are contravariant.components of censors, the subscripts are covariant 
components, gl3 is the metric tensor, a I is the acceleration, Vj is the symbol of covariant 
differentiation, and eij = (Viv 5 + Vivi)/2. Changing insignificantly the calculations per- 
formed in [8], from (3.3) we obtain an equation of the form 

pHa! = --VJP -5 (~ -5 ~)Hv~D -5 ~HAv ~ -5 DV~(LH ) -5 etJvj(21~r/), (3.4) 

where A = vJvj is the Laplace operator. The raising of subscripts is realized by contract- 
ing with the metric tensor, for example, V i = ~JVJ, eli = g~kgJZ~l. In particular, in polar coor- 
dinates (r, radius: ~ , angle) Eqs. (3.4), written fown for the physical components of vec- 
tors and censors, acquire the form 

/ Ov r Ov r % OVr 
p H ~-~ -5 v~ ~ -5 7 o~ 

20v~ 
+ ~H Aur r ~ 0o? 

v~ ) OP OD 
= Fr -- -~r -5 (X -5 IX) H-~r 

vr "1 D O~H 20~tH 2 0 t t H  
r 2/ -5 -~;-r -5 -~-r err-5~-~ -e~" 

*The flow of viscous films with a stress tensor of shape (3.2) was treated in [5]. 
%A flow of this nature was considered in [6]. 
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where 

P = p(t -- p/pOgII~/2 �9 

(0~t , 0% v, 0% ,,,%] ~ o P ~ ( ~  .HOD 
pH + v, "Yf'r + 7- ~- - -  - 7 - /  F~ 7 o~ -~- = ~-~ + 

+ ~ H  Avv+ r~ 0~ r ~ + 7 0q~ + 2 ~ e r ~ + - 7 " - ~ e t ~  

Ov r v r Ovo. D = ~ _ r  + _ 7 _ +  i o " ,  t o i a ~ - ~ ,  h = - - -  
�9 r Or ~ ' 7 -  ~'r + r"  O~p 'z' 

The c o n t i n u i t y  equa t ion  a c q u i r e s  the  form 

(3.5) 

OH OH vv OH 
0-'{ + vr-~r + 7-~-~ + HD = 0. (3.6) 

4. Examples. A. One'Dimensional Film Spreading. Let the variables H and u depend on- 
ly on time t and the coordinate x, while v = 0. From (2.13), (2.14) we than obtain the sys- 
tem 

OH/Ot + uOH/Ox + HOu/Oz = 0; (4.1)  

~r 'an -- (1 g-5" + 4vH , -- ~- = -- P/p~) (4.2) 

where ~ is the kinematic viscosity coefficient. We assume a creeping flow under the action 
of the force y (i.i), applied to the edge of the film. We note that the hydrostatic pressure 
force of the lower fluid acting on the edge is included in the equation of motion. Equating 
the right-hand side of (4.2) to zero and integrating theequation obtained, we have 

(I -- p/pOgH2/2 -- 4vH0u~x = ?~. (4.3) 

Instead of x we introduce the Lagrangian coordinate a by the equations x = x(t, a), x(0, a)= 
a. Denoting x a = ~x/3a, we then obtain 3u/~x = (3Xa/~t)/x a. Equation (4.1) gives the rela- 
tion Hx a = H(0, a), hence x a = H(0, a)/H and, consequently, 8u/3x ~--(~H/~t)/H. Substituting 
this expression into (4.3), we obtain for H(t, a) the equation 

H ~ OH 
(I -- p/~) g T + 4v ~F = ~/0. (4.4) 

Thus, transforming to the Lagrangian coordinate we have eliminated differentiation over the 
spatial variable and have obtained an ordinary differential equation. Introducing the dimen- 
sionless height h and the constant k by the equations 

h = H/H o, ~ = pg(l -- p~1)H0~9, (4.5) 

where Ho is given by expression (1.2), we reduce (4.4) to the form 

d h ~ t  q- ~ -- 1) = O. 

The equation is easily integrated 

2 
h ( ~ a )  = l + [t +2 / (h (O ,a ) - - t ) ]o~ t - -  1" (4.6)  

This equation is also valid for h(O, a) < i, when the film extends to a width less than Ho. 
The position of the element with coordinate a is given by the expression 

x (t, a) = ,  xada = h--~,a) da. 
O 0 

For flows of molten glass over molten tin with P = 2460 kg/m 3, 01 = 6450 kg/m 3, 7a = 
0.267 J/m 2, Y*a = 0.497 J/m 2, Yt = 0.392 J/m 2, ~ = l0 s kg/m-sec we obtain at temperature 
1000~ a characteristic spreading time I/2x = i min, which agrees in order of magnitude with 
the experimental data of [4]. 

B. A Film of Thickness KHo Flowing from the Origin of Coordinates in the Direction of 
the x Axis with Velocity U. This problem is solved on the basis of the results obtained in 
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the preceding example. For a film element flowing at moment to the thickness at moment t is 
given by the modified Eq. (4.6): 

h(t, to) = I -5 2/{expI2• --  t0)l(K -5 i)/(K - -  i) - -  i}. ( 4 . 7 )  

A f t e r  t i m e  t -- to  t h e  e l e m e n t  i s  e x t e n d e d  by  K / h ( t ,  t o )  t i m e s .  T a k i n g  i n t o  a c c o u n t  t h e  l e n g t h  
o f  a l l  e l e m e n t s  d u r i n g  t h e  t i m e  i n t e r v a l  to ~< T <~ t , i t s  p o s i t i o n  i s  d e t e r m i n e d  by t h e  e x -  
p r  es s i o n  

t 

x ( t ,  to) = J ;~ (t, , )  = K U  (t - -  t0) - -  - ~  in  ~ -5 ~ In 1 -5 ~ e - ~ ( H 0 )  �9 ( 4 . 8 )  
�9 t 0 

With the lapse of a time somewhat larger than i/2~, a stationary flow regime is established, 
at which the film can be separated into two portions. At the first the width varies from K 
to i, and in the second a film of unit width flows with velocity KU. In particular, the pro- 
file of its edge W is given by the equation 

! i 2K 
W (t) = x (t ,  0)  = g g  {t  - In -~  7 - / T J  

The second term in the brackets gives an edge retardation in comparison with the motion of a 
film edge of width Ho, flowing with velocity KU. The profile of initial portion h(x), which 
can be determined from (4.7), (4.8), is shown for the cases K = 2 and 3 on Fig. 2 (curves 1 
and 2, respectively). 

C. Radial Flows of Films with Account of a Linear Tension at the Edge. Along with the 
force y, a tension force of the line of separation of the three media of magnitude yl/R is 
also acting on each unit length of the film edge, where R is the radius of curvature. We re- 
strict ourselves to cases of creeping radial flows (v m = 0, v r = v) of films of homogeneous 
thickness H = H(t). Equations (3.5), (3o6) acquire then the form 

~(au -~ + )  ---- 0; (4o6a) 
~r \ Or 

OH/Ot -5 H(Ou/Or -5 u/r) = 0. ( 4 . 7 a )  

From ( 4 . 6 a )  we o b t a i n  v = A ( t ) r  + B ( t ) / r o  For  a f i l m  i n  t h e  fo rm o f  a c i r c l e  o f  r a d i u s  R, a 
"lens," we obtain v = A(t)r from the condition of finite velocity at r = 0. The radial com- 
ponent of the stress tensor, which is needed for the formulation of boundary conditions, is 

Srr = - - P  -5 ~,H(av/Or -5 v/r) J~ 2~IIOWar. 
T a k i n g  i n t o  a c c o u n t  t h e  r e l a t i o n  A = - - ( d H / d t ) / 2 H ,  f o l l o w i n g  f rom ( 4 . 7 a ) ,  t h e  c o n d i t i o n  o f  
e q u a l i t y  o f  f o r c e s  a t  t h e  b o u n d a r y  g i v e s  t h e  e q u a t i o n  

dH H ~ 
3~ ~ + p(l - -  P/Pz) g --~- = %' -5 ?IIR.  (4.8a) 

Putting here dH/dt = O, we obtain a new value of equilibrium width H, �9 Ho, depending on R 
[2]: 

H2 * 2 (y + Yl /R)  
. , ~ 

pg(i -- P/Pl) 

The conservation condition of film volumes gives the relation 
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R2(t)H(t) = R2(0)H(0) �9 (4.9) 

For the dimensionless height h(t) we obtain from (4.8a), (4.9) the equation 

dh/dt -5 u,(h ~ -- 1) = e],rh ", ( 4 . 1 0 )  

where u, = 4• e = '~t/[3~tHoR(O)]h/~(O)]. For sufficiently large R(0) the quantity e is small 
For e = 0, when we neglect the linear tension, we obtain Eq. (4.6) for h(t) with replacing 

by ~,. For eb& 0 we have 

h(0) 

t = x, ( ~ -  I) - ~ V ~  " 
h 

Knowing the film thickness, the edge position is found from (4.9). 

Another case is that of an infinite film with a hole of radius R. Here v = B(t)/R, and 
it follows from (4.7a) that H = const. The conditions at the edge give 

p(l  - -  p~ , )gH2S  + 2~tHB/TI ~ = ? - -  ~ / R .  ( 4 . 1 1 )  

Taking into account that dR/dt = B/R, from (4.11) we obtain the following equation for the 
motion of the edge: 

d R / d t - 5 ~ R / 2 ~ H = - - ~ / 2 ~ H ,  (4.12) 

where ~ = pg(i--p/pa)H2~--y . If u > 0, i.e., H > Ho, equilibrium is impossible and the hole 
tightens. The dynamics of the process is given by the solution of Eq. (4.12): 

B(t) = (R(0) -5 ~/a) exp (--at~tH) -- ~/=. (4.13) 

For u = 0, H = Ho the hole also tightens: 

R(t)  = R(O) -- ~ . t e ~ U o .  

When a < 0, H < Ho an equilibrium state is possible, in which the width H, and the radius R, 
are related by 

tI~ = 2 ( v -  ~/~,) 
pg (1 - -p lp , )  

If R(0) and H(0) do not satisfy this condition, it is seen from (4.13) that 6R = R -- R, will 
be unstable. In particular, for ~R(0) > 0 the hole will extend to infinity. 
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o 

4. 

. 

7. 

8. 

LITERATURE CITED 

Ao W. Adamson, Physical Chemistry of Surfaces, 4th edn., Wiley, New York (1982). 
Io Langmuir, "Oil lenses on water and the nature of monomolecular expanded films," J. 
Chem. Phys., l, No. ii (1933). 
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon (1959). 
L. Ao Pilkington, "The float glass process," Proc. R. S.c., A314, No. 1516 (1969). 
V. Vo Krotov and A. I. Rusanov, "Equations of two-dimensional hydrodynamics and the 
equation of state of aqueous liquid films with surfactants," in: Surface Effects in 
Fluids [in Russian], Leningrad State Univ. (1975)o 
Y. L. Yeow, "On the stability of extending films: a model for the film casting process," 
J. Fluid Mech., 66, Pt. 3 (1974). 
F. T. Trout.n, "On the coefficient of viscous traction and its relation to that of vis- 
cosity," Proc. R. S,c., A77, No. 519 (1906). 
L. I. Sedov, A Course in Continuum Mechanics, Vol. i, Wolters-Noordhoff, Groningen 
(1971). 

194 


