FLOW OF A VISCOUS FILM OVER THE SURFACE OF AN INVISCID FLUID
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1., Equilibrium Width of a Film, If a certain amount of a light fluid is placed on an
unconfined surface of a heavier one, while the fluids do not mix the final state of the sys-
tem is determined by the sign if the quantity y:

Y=" + Ya — Vias (1.1)

where v;, Yz, and yiy are the surface tension coefficients of the light fluid—heavy fluid,
light fluid—atmosphere, and heavy fluid—atmosphere boundaries, respectively (Fig. 1). If
¥ < 0 (the quantity y is called the spread coefficient [1]), a monomolecular film is formed.
For vy > 0 a film of finite width H, is formed, with the width determined by the equation [2]

2 __ 2y
Ho ~ pg(T—0/py)? (1.2)

where p and p,; are the densities of the upper and lower fluids, and g is the acceleration.

The total force acting on the film cross section AB from the right equals the sum of sur-~
face tensions of the horizontal boundaries of the upper fluid due to hydrostatic pressure of
its layer of height H. The force acting on AB from the left equals the surface tension of
the free boundary of the lower fluid due to the pressure of its layer of height H,. Equating
these forces, we have

Y1+ Vo — PEH?Y2 = Y10 — pgHi/ 2. (1.3)

Taking into account the Archimedes law H; = (p/pi)H, Hy + H, = H, we obtain (1.2) from (1,3).
Considering the problem of equilibrium width of a film by the ordinary methods of hydrostat-
ics, discussed, e.g., in [3], it can be shown by account of the boundary conditions at point
0 that relation (1.3) is an exact consequence of the equations of hydrostatics. Not being

interested in the shape of the film at distances of order H, from the boundary, it can be as-
sumed that the action of surface forces of all boundaries reduces to the action of a force of
magnitude vy per unit length on the film boundary. This approximation, correct in the static
case, is also valid in some flow region under the action of forces of the same order as v.

The interest in this group of problems has increased with the appearance of a new method
of producing high~quality glass plates, the float process [4]. At one stage of this process
the flow of molten glass flows over into a bath with molten tin, while the edges of the glass
strip remain free, After the time necessary for the glass surface to remain smooth, its -
width reaches an equilibrium value Ho equal to 6-7 mm. In this example we encounter a flow
of a viscous film over a surface of an inviscid fluid, since the viscosity of tin is negligi-
bly low at high temperatures in comparison with the viscosity of glass, and there are no tan-
gential stresses on their common boundary. All viscous effects in this type of flow are due
to internal friction due to the change in shape of the film itself.

2. Derivation of Equations of Motion. We start from the equation of continuity and the
equations for the horizontal components of the momentum for an incompressible fluid of con-
stant densitys$

ouldx - dv/dy -+ dw/dz = 0 (2.1)
p(ou/ot + dudlox + Ouvldy + Ouwlez) = 06,y 10z + 06,40y + 00,, 103; (2.2)
p(av/ot - duv/dx +- IV*/dy - Bvwidz) = 00y,/0z + 0yyldy -+ doy,!0z. (2.3)

where u, v, w are the velocity components along the x, y, 2z axes, and Oyy, Oxye-s are the com-
ponents of the stress tensor. The positions of the upper and lower surfaces of the film H,
(t, x, y) and —H,(t, x, y) are assumed to be slowly varying functions of x and y, so that the

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2,
Pp. 33-40, March-April, 1982, Original article submitted January 15, 1981,

188 0021-8944/82/2302-0188507.50 © 1982 Plenum Publishing Corporation



Z
H, B a

Y O/— P - X
‘Hii\_.&é______
Ay,

i P{
Fig. 1

characteristic intervals of their variation are large in comparison with the width H = H, +
Hz, and the inequalities (OH;/0xz)* < 1, (0H/dy) <« 1, i = 1, 2 are also valid. In integrating Eqs.
(2.1)-(2.3) over z we use the equation

H, H,
f v g, 8 oH oH

‘Y sy 2)de= 5 j fdz — f i — 1 32753 (2.4)

H, “H, -H,

and similar equations for differentiation with respect to x and y., We introduce averages of
the velocity and the stresses over the width

Hy Hy
. 1 1 *
<u> = -—IT udZ, <Gxx> = "F ) O'xxdz., fee
. _.Hl "I{l

The following kinematic conditions are valid for w values on the surfaces

aH af al arr aH oH
= 2 —r 2 ) SUSY a STt | -1
WIH2 = (—d_t— + u oz ¢ 2 ay )}121 u !_Hl ; ( P u E + v ay )._Hl‘ (2'5)

Integration of (2.1) over z with account of (2.4); (2.5) gives an.equation of continuity in
the form
aIr

It e (W) e (H (23) = 0.

The velocity components u and v can be written in the form

u = {u)y -} du, v = vy 4 v, (bud = dv) = 0.

We assume that the horizontal velocities vary little over the film width, i.e., [6u] < Kud|,
BriKry| . After integration over z the left-hand side of Eq. (2.2) can be written in the
form

plOHuY/0t + dH(u)¥ox + dHuY(v)idy + O,l,

where O; is the sum of second-order terms. Integration of the right-hand side of (2.2) gives
the expression

O {0y ' 0H (o,
ar ' ay

v ' ‘ 9l 6112' : [ OH, oH,
| Oa: — Uxx‘(;;' — Oxy W Hy Lsz -+ Oxx Bz + Oxy —@— -H,*

(2.6)

The components of the outer normals to the surfaces —H; and H, can be written approximately
in the form

n;, = (—0H,/0zx, — 0H,/dy, —1), n, = (—dH,/0z, —0H,/dy, 1).
It is now seen that the square brackets of (2.,6) contain the x-components of the forces act-

ing on the film surface. We assume that forces are absent at the upper boundary of the film,
but at the lower boundary

aHl aIIl I 1 aHl 1 aHl
Oxz - Oxx 3 -+ O’xyW -, == 1 O0xz T Oxx 52" -+ O'xy"a_y‘ —ay’

where o' is the stress tensor in the lower fluid.
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The vaﬂishiﬁg of the z-componeht of the force at the upper boundary is written, up to
first-order quantities, in the form :

Oz |g, = 0.
(2.7)
For a Newtonian fluid
’ Oxx = —p + 2pdu/oz, ¢,y = w(du/dy -+ dvidz),
6., = —p + 2udwidz, (2.8)

where p is the pressure and u is the viscosity coefficient, Taking into account (2.1), con-
dition (2.7) gives :

- fy_ dv . d<u) a<v)y
les - 2”[6:: +:¢7_y]112 - _2“( oz + dy )-

(aﬁu 661:)

= T 5 (2.9)

Bearing in mind that Su and §v are not only small, but are also slowly varying functiomns,
i.e., differentiation with respect to x and y enhances the order of smallness of the last
term in (2.9), it can be neglected within the accuracy assumed by us. In thdt case

Pla,=—2p(d {udldx -+ 0 {w)idy). (2.10)
We note that the transition from (2.9) to (2.10) is essentially equivalent to the assumption

of linear dependence of the velocity w on z, since the equality w = A(t, x, y)z + B(t, x, y)
follows from the equation

Ow/dz = —(@ud/dz 4 {v)/dy)] (2.11)
We assume that the pressure in the film varies hydrodynamically: 8p/dz = -pg.

Then from (2.10) we obtain
p = pg(H; — 2) — 2u(0u)/dx + ¥ v)/dy).
Using (2.8), (2.11), we have on the lower boundary
Oz |-n, = — pgh. (2.12)

The representation o}h= — P » where &§ik is the Kronecker symbol.

With varying degree of accuracy one can take into account the flow properties of the
lower fluid, choosing various expressions for the pressure p!. The simplest property, suit-—
able for low-intensity flows, is the assumptlon that the pressure in it is hydrostatic. Us-
ing (2.12), from the condition Oz|-m, —-Uzzl-—H1 , we then obtain H, = (p/p2)H, i.e., in our ap-
proximation the condition of hydrostatic equilibrium is satisfied locally. One can now write

- H? 2 2
Homy=—pg L 4 ap %2 4 i %2 40, Homy =pH (52 +%2) 10,

Besides,
aH aH oH 2 2
1 p° oH
[sz+0xx Ery + xy ay] —Plng-gx————-z—‘-);—g'z—.

Collecting the expressions obtained, turning to substantial description of the inertial
terms, discarding the averaging sign, and using the fact that the equation for the y-compo-
nent of the momentum is obtained from the equation for the x—-component by replacing z =¥,
u==v , we have the following system for the functions H, u, v of the variables t, x, y:

OH/8t + 0Huldx - 8Hv/dy = 0; A (2.13)
di F’] L . g2
pH%:‘ 'gl:_ P(i—- 9/91) g—2—+ 4“H26u —{—Z}LH } -+ = 3 [MH (_g_;‘. + %—)]Y (2.14)
a a
o =5 [ 9(1—9/91)3 RN L2 +2pH—] + ax[ H('a%"‘?i‘)] (2.15)

where d/dt = 0/9t + ud/ox 4 vd/dy .
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3. General Formulation. We write Egs. (2.14), (2.15) in the form
pHdv,/dt = 68 /0z, + Fy, i, k=1, 2,

where by k we understand summation; Sjy, two-dimensional stress temsor; and F;, vector of ex-
ternal forces. The tensor Si) can be represented in the form

Sin = — PO -+ Sip = — Pu -+ \HDSu + 2pHes.
where P is the two-dimensional pressure:
= p(1 — plp,)gH*/2; (3.1)

ejx is the velocity deformation temsor, and D is the two-dimensional velocity. The quanti-
ties AH and uH play the role of Lamé constants., Using the deviator dji, the viscous part of
the stress tensor S ik can be written in the form

Sip = dip -+ WHDS, diy = 2uH (eik — -%- 5ikD)- (3.2)

Thus, the film flow can be described as flow of a two-dimensional fluid with the equa-
tion of state (3.1) and nonvanishing Lamé "constants" (which due to the factor H are func-
tions of x4 and t) or the two-dimensional analog of the bulk viscosity u'H, with A = 2 , u' =
3u. This stress tensor should not be used if it is necessary to take into account the f£ilm
extension.* In the case of planar flow (in the three-dimensional sense) for v, = 0 we have
Sl—~4pHBvJ6x t In passing to the one-dimensional flow and averaging Eq. (2.14) over y we
obtain S§; = w'sdv,/dz , where s is the area of the transverse cross section. Thus, the quanti-
ty u' = 3p is practically the "longitudinal viscosity" introduced in [7].

The film motion over a layer of an inviscid fluid can be interpreted as slipping over a
solid surface deflected by the weight of the film by the quantity H;., For p; = «» we obtain
a slipping of the film over a horizontal plane, with P = pgH®/2, If we now put in the equa-
tions ¢ = A = 0, we obtain the ordinary equations of "soft water,” so that the given model
can also be considered as a generalization of the "soft water" model,

In the present model we take into account only the inertia of the film itself, there-
fore it can used when inertial effects in the lower fluid have little effect on the film flow,
Hence also follow the special forms of the fast film flows, such as the accelerated motion of
a film of constant width in a direction parallel to the edge. If the film moves together
with the fluid flow, these flows can also be considered within the model considered, intro-
ducing a moving coordinate system and including in Fj inertial forces.

It is advisable to give the formulation of the equatiomns obtained in arbitrary coordi-
nates, The general equation of motion of a continuous medium with account of the replacement
of p, A, u by pH, AH, uH is [8]

pHa' = y;S¥ + F, §% = —Pgi  \HDg" + 2uHet, i, j =1, 2. (3.3)

Here the superscripts are contravariant components of tensors, the subscripts are covariant
components, gil is the metric tensor, al is the acceleration, V4 is the symbol of covariant
differentiation, and eii = (Vlv + VJvl)/Z Changing insignificantly the calculations per-
formed in [8], from (3. %) we obtaln an equation of the form

pHal = —yiP 4 (A + pw)Hy'D + pHAV + Dyi(AH) + €'y ;(2uH), (3.4)

where A = VJV:; is the Laplace operator. The raising of subscripts is realized by contract-
ing with the metric tensor, for example, yi = gify;, €¥ = gikgile,; | In particular, in polar coor-
dinates (r, radius: ¢ , angle) Egs. (3.4), written fown for the physical components of vec-
tors and tensors, acquire the form

av, av, v, Ov v2 »
pH(a—;+vr—,,;’- —;’435———;") Fo— L+ wHS
27 IH 6H 2 d
+uH(Avr—%7,§——)+D T2 e+ 2 0o,

*The flow of viscous films with a stress tensor of shape (3.2) was treated in [5].
+A flow of this nature was considered in [6].
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S ) —Fy - L2 2D

(3.5)
2 v,y D o\H ﬂpH opH
+pH(AU" __W ,-)+—r— +25- rtv‘l““':%,‘ (N
' v, v, 1 Oy * 1 9 1 8%,
where D=3’_—+—;+T.&;, A=?+T'07+?-—a_;5’
=t gt (To e LI 1%
™Y grr T 2 \ar r r6q>’ had r 99 r’
P = p(1 — p/p,)gH?*2 . The continuity equation acquires the form
1
w + ,m-+———— +HD=0. (3.6)

4, Examples, A, One-Dimensional Film Spreading. Let the variables H and u depend on-
1y on time t and the coordinate x, while v = 0, From (2.13), (2.14) we than obtain the sys-
tem

OH/3t + udH /o -+ Houloz = 0; -

' H® 3
B = 21— ooy el + w3, (4.2)

where v is the kinematic viscosity coefficient., We assume a creeping flow under the action
of the force y (1.1), applied to the edge of the film. We note that the hydrostatic pressure
force of the lower fluid acting on the edge is included in the equation of motion. Equating
the right-hand side of (4.2) to zero and integrating the equation obtained, we have

(1 — plp)gH?¥2 — 4vHOuldz = y/p. (4.3)

Instead of x we introduce the Lagrangian coordinate a by the equations x = x(t, a), x(0, a)=
a. Denoting x, = 9x/9a, we then obtain du/dx = (9xg/3t)/x4. Equation (4.1) gives the rela-
tion Hxg = H(0, a), hence x, = H(0, @)/H and, consequently, du/dx = —(3H/9t)/H. Substituting
this expression into (4.3), we obtain for H(t, @) the equation

4
(t—plpy) g 2 + 4w 5 = vip. (4.4)

Thus, transforming to the Lagrangian coordinate we have eliminated differentiation over the
spatial variable and have obtained an ordinary differential equation. Introducing the dimen-
sionless height h and the constant k by the equations

= HIH,, » = pg(l — p/p)H,/8u, (4.5)
where Hy is given by expression (1.2), we reduce (4.4) to the form
“dhidi 4- =(h2 — 1) = 0.
The equation is easily integrated

2
I [1 -+ 2i(h (0, a) — 1)] ™ —

h(t,a) = (4.6)

This equation is also valid for h(0, @) < 1, when the film extends to a width less than H,.
The position of the element with coordinate g is given by the expression

: a N
z(t,a) = Y Zoda = S’:it. Z;d
0

For flows of molten glass over molten tin with p = 2460 kg/m®, p, = 6450 kg/m®, vq =
0.267 J/m®, Y4 = 0.497 J/m®, v, = 0.392 J/m®, u = 10® kg/mesec we obtain at temperature
1000°C a characteristic spreading time 1/2x= 1 min, which agrees in order of magnitude with
the experimental data of [4].

B. A Film of Thickness KHo, Flowing from the Origin of Coordinates in the Direction of
the x Axis with Velocity U, This problem is solved on the basis of the results obtained in
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the preceding example. For a film element flowing at moment to the thickness at moment t is
given by the modified Eq. (4.6):

hit, te) = 1 + 2/{expl2x(t — o) (K + 1)K — 1) — 1}. R

After time t — to the element is extended by K/h(t, to) times. Taking into account the length
of all elements during the time interval ¢, <{tv<{t , its position is determined by the ex-
pression

t

i -—1 —om{t—

(¢, to)_ShK(tUd:) KU[(t—t)——ln it (1+ o~ ‘°))] (4.8)
0

With the lapse of a time somewhat larger than 1/2 %, a stationmary flow regime is established,
at which the film can be separated into two portions., At the first the width varies from K

to 1, and in the second a film of unit width flows with velocity KU. In particular, the pro-
file of its edge W is given by the equation

W(t):x(t,O)zKU(t—-—%ln e )

The second term in the brackets gives an edge retardation in comparison with the motion of a
film edge of width He, flowing with velocity KU, The profile of initial portion h(x), which
can be determined from (4.7), (4.8), is shown for the cases K = 2 and 3 on Fig. 2 (curves 1
and 2, respectively).

C. Radial Flows of Films with Account of a Linear Temsion at the Edge. Along with the
force vy, a tension force of the line of separation of the three media of magnitude v;/R is
also acting on each unit length of the film edge, where R is the radius of curvature. We re-
strict ourselves to cases of creeping radial flows (vo = 0, vy = v) of films of homogeneous
thickness H = H(t). Equations (3.5), (3.6) acquire then the form

G (al +_)=0_ | (4.6a)
“or or !

oH /ot - H(ov/or + vir) = 0. %.72)

From (4.6a) we obtain v = A(t)r + B(t)/r. For a film in the form of a circle of radius R, a
"lens," we obtain v = A(t)r from the condition of finite velocity at r = 0, The radial com-
ponent of the stress temsor, which is needed for the formulation of boundary conditions, is

S,, = —P + AH(@/or + vir) + 2uHov/or.

Taking into account the relation A = —(dH/dt)/2H, following from (4.7a), the condition of
equality of forces at the boundary gives the equation

2
31» 7 o1 p/pl)g%—=v+vlm. (4.8a)

Putting here dH/dt = 0, we obtain a new value of equilibrium width Hs > H,, depending on R

[2]:

2(v+7v1/R)

=1 v,
Pg(1 —p/oy)

The conservation condition of film volumes gives the relation
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R¥t)H(t) = R*0)H(0). (4.9)
For the dimensionless height h(t) we obtain from (4.8a), (4.9) the equation
dhidt + w,(h? — 1) = eV'h, (4.10)

where %, = 4x/3; & = y1/I3pH,R(O)V 2(0)]. For sufficiently large R(0) the quantity ¢ is small
For ¢ = 0, when we neglect the linear tension, we obtain Eq. (4.6) for h(t) with replacing
“ by %1. For €= 0 we have

KMo
dh

=h % (B—1)—eVh

t

Knowing the film thickness, the edge position is found from (4.9).

Another case is that of an infinite film with a hole of radius R. Here v = B(t)/R, and
it follows from (4.7a) that H = const. The conditions at the edge give

p(t — olp))gH*2 - 2nHBIR? = vy — y/R. (4.11)

Taking into account that dR/dt = B/R, from (4.11) we obtain the following equation for the
motion of the edge:

where a = pg(l —p/p)H*2—%y . 1If a > 0, i.e., H > Ho, equilibrium is impossible and the hole
tightens. The dynamics of the process is given by the solution of Eq. (4.12):

R(t) = (R(0) + v./a) exp (—at/2uH) — 3 /a. (4.13)
For a = 0, H = Hy, the hole also tightens:
R(t) = R(0) — Y t2uH,.

When @ < 0, H < Ho an equilibrium state is possible, in which the width Hy and the radius Ry
are related by

2(v— 1 /R)

7 { gt LU . N

) * pg(l —-P/Pl)

If R(0) and H(0) do not satisfy this condition, it is seen from (4,13) that 6R = R — Ry will
be unstable, In particular, for SR(0) > 0 the hole will extend to infinity.
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